
LLNL-PROC-609976

Recent Advances in the Mercury
Monte Carlo Particle Transport
Code

P. S. Brantley, S. A. Dawson, M. S. McKinley, M. J.
O'Brien, D. E. Stevens, B. R. Beck, E. D. Jurgenson, C.
A. Ebbers, J. M. Hall

January 14, 2013

International Conference on Mathematics and Computational
Methods Applied to Nuclear Science & Engineering (M&C
2013)
Sun Valley, ID, United States
May 5, 2013 through May 9, 2013

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013)
Sun Valley, Idaho, USA, May 5-9, 2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013)

RECENT ADVANCES IN THE MERCURY
MONTE CARLO PARTICLE TRANSPORT CODE

Patrick S. Brantley, Shawn A. Dawson, Michael Scott McKinley, Matthew J. O’Brien,
David E. Stevens, Bret R. Beck, Eric D. Jurgenson, Chris A. Ebbers, James M. Hall

Lawrence Livermore National Laboratory
P.O. Box 808

Livermore, CA 94551
brantley1@llnl.gov; dawson6@llnl.gov; quath@llnl.gov, obrien20@llnl.gov; stevens9@llnl.gov;

beck6@llnl.gov; jurgenson2@llnl.gov; ebbers1@llnl.gov; hall9@llnl.gov

ABSTRACT

We review recent physics and computational science advances in the Mercury Monte Carlo particle
transport code under development at Lawrence Livermore National Laboratory. We describe recent
efforts to enable a nuclear resonance fluorescence capability in the Mercury photon transport. We also
describe recent work to implement a probability of extinction capability into Mercury. We review the
results of current parallel scaling and threading efforts that enable the code to run on millions of MPI
processes.

Key Words: Monte Carlo, Mercury, nuclear resonance fluorescence, parallel scaling, threading

1. INTRODUCTION

Mercury is a Monte Carlo particle transport code under development at Lawrence Livermore National
Laboratory (LLNL) [1,2]. Mercury can transport neutrons, photons, and light element (hydrogen and
helium) charged particles. Both fixed source and criticality problems are treated. Monte Carlo particles can
be tracked through both combinatorial geometry and meshes. Mercury runs efficiently on current
generation massively parallel computing platforms and is being improved to enable its use on emerging
platforms. Previous conference papers have provided overviews of the capabilities and development of the
Mercury code [3–7]. In this paper, we review recent physics and computational science advances in the
Mercury code since the most recent update [3].

A major focus of physics development in Mercury has been to begin enabling the modeling of applications
that require the treatment of nuclear resonance fluorescence. We describe the nuclear resonance
fluorescence physics process and initial capabilities that have been developed to support this capability. We
also describe the recent implementation of a probability of initiation capability in Mercury based on the
Monte Carlo estimate of the probability of extinction. We present numerical results for a probability of
initiation verification test problem.

A major focus of computer science development has been to enable Mercury to run on large, of order
millions, of processes using both MPI and thread parallelism. We describe the current parallel scaling and
threading efforts and show the results of initial scaling studies up to two million MPI processes.

Brantley et al.

2. NUCLEAR RESONANCE FLUORESCENCE

An effort is underway at LLNL to develop gamma-ray beam sources whose energies are tunable and nearly
mono-energetic. These “MEGa-rays” (Mono-Energetic Gamma-rays) are obtained by Compton
upscattering laser photons from high-energy electrons. The gamma-ray energy can be tuned to the known
nuclear resonance fluorescence (NRF) energies of a desired isotope and used to interrogate samples for the
presence of the isotope. Nuclear resonance fluorescence is a physical process by which a photon is
absorbed by a nucleus which subsequently decays to its ground state through emission of one or more
gamma rays with energies characteristic of the given isotope. The practical application of this technology
requires the design of suitable photon detectors such as the Dual Isotope Notch Observer (DINO)
detector [8]. Current design efforts at LLNL have used the COG Monte Carlo particle transport code [9].
The physics capabilities in Mercury are being improved to enable its use in ongoing detector design efforts.
We note that the MCNPX code also has NRF capability [10].

The capability to use nuclear resonance fluorescence reaction cross sections through the Monte Carlo
All-Particle Method (MCAPM) library [11] is currently being enabled in Mercury. The NRF reaction is a
new reaction in addition to the Rayleigh (coherent) scattering, Compton (incoherent) scattering,
photoelectric absorption, and pair production reactions already treated in MCAPM and Mercury. Details of
the generation of 238U NRF cross sections for use in the MCAPM library are given in the Appendix.

As an initial test of the Mercury NRF capability, we compared the modeling of photon reactions in
Mercury and COG for a 238U microdot test problem shown in Fig. 1. The microdot is a cylinder of
diameter and length 1 µm (10−4 cm) composed of 238U at a density of 10−3 g/cm3. A mono-energetic
incident beam of 680.1 keV photons impinges on the cylinder. Rayleigh, Compton, photoelectric, and NRF
reactions are modeled (the source photons are below the threshold energy for pair production). The goal of
the test problem is to tally the energy spectrum of the photons backscattered from the microdot. This
problem has been modeled using both the Mercury and COG Monte Carlo transport codes with 108 Monte
Carlo particles.

U238 microdot

Tally backscattered photons

108 gammas
@ 680.1 keV

L = 1 µm

ρ = 10-3 g/cm3

Figure 1. 238U Microdot Problem

The energy spectra of the backscattered photons as computed by Mercury and COG are shown in Fig. 2,
with relevant spectral features identified. The Mercury and COG backscattered spectra, in particular the

2/12

Recent Advances in Mercury

NRF emission lines, are in generally excellent agreement. The only significant discrepancy between the
Mercury and COG results occurs for photons backscattered as a result of Rayleigh scattering (maintaining
the source energy). This difference in backscattering appears to be related to a more accurate form factor
treatment in COG and is currently under additional investigation. This microdot modeling comparison has
resulted in improved modeling capability in both Mercury and COG. NRF reaction data for a broader range
of isotopes is currently being generated.

L edge: radiation cutoff
from electrons filling L
shell (n=2) vacancies

Kβ and Kα lines (electron
transitions to n=1)

Compton at angles > 90,
kinematics dictates the
cutoff ~300 keV

NRF Nuclear Levels

Rayleigh
Scattering

Source
Energy

Energy [MeV]

Figure 2. 238U Microdot Backscattered Energy Spectrum

A photon linear polarization capability is also under development in Mercury to facilitate MEGa-ray
detector design efforts. Details of this work will be reported in future publications.

3. PROBABILITY OF EXTINCTION

In a supercritical nuclear system, a single neutron can result in a divergent chain reaction. Alternatively, a
single neutron can lead to a finite length neutron chain that goes extinct as a result of neutron absorption
and leakage. The probability of initiation (poi) is the probability that one neutron from a specified source
leads to a divergent chain reaction, while the probability of extinction (poe) is the probability that it does
not lead to a divergent chain reaction (poe = 1 - poi).

A poi capability based on a forward solution to the Boltzmann transport equation was previously developed
and implemented in Mercury [12]. A poi simulation in Mercury begins with a source of particles that
represent the head of unique families of neutrons. A family originates with a single source particle. Each
time cycle, the number of progeny for each family is calculated. Once the number of progeny has
surpassed a predefined user-supplied threshold, the family is tallied as divergent and the whole family is

3/12

Brantley et al.

removed. The probability of initiation is computed as the number of divergent families divided by the
number of initial source families. Rising et al. [13] have also recently implemented time-based and
generation-based poi cutoff methods in a research version of the MCNP code.

Recently, Booth [14] suggested the use of a poe estimate computed using Monte Carlo to compute the
probability of initiation, and he implemented this poe method in a modified version of MCNP [15]. One of
the main advantages of the poe method over the poi method is that it does not require a user to specify the
number of progeny required to determine if a chain is divergent. In addition, Booth has demonstrated
useful variance reduction approaches for the poe algorithm.

A poe-based capability for determining the probability of initiation has recently been implemented in
Mercury [16]. The poe implementation in Mercury is time-based rather than generation-based. As in the
poi case, a poe simulation in Mercury begins with a source of particles that represent the heads of unique
families of neutrons. Each time cycle, the number of families that have gone extinct are counted. The
probability of extinction is computed as the number of extinct families divided by the number of initial
source families. The probability of initiation is then computed as poi = 1 - poe. The poe algorithm has also
been extended to accommodate the spatial parallelism via domain decomposition that is available in
Mercury [17].

As an initial verification of the Mercury poe capability, we compute the solution to an analytic infinite
medium problem proposed by Booth [14]. The material has only two reactions, absorption and fission. The
probability per collision for an absorption is 49.9%, while the probability for fission is 50.1%. Fissions
always produce exactly two neutrons. The analytic poi for this test problem is 3.992016×10−3.

The Mercury results for the poi and poe methods are shown in Table I, where N is the number of starting
families and the poi computed using the poe algorithm is given by poi = 1 - poe. Both methods exhibit
convergence towards the analytic solution with increasing number of starting families. (Results with over
221 = 2,097,152 starting families are not available, because the Mercury simulations run out of computer
memory.) Differences with Booth’s results may be due to the time-based implementation in Mercury
compared to the generation-based approach in Booth’s implementation. These initial verification results
support the correctness of both the poi and poe implementations in Mercury.

4. PARALLEL SCALING AND THREADING

4.1. Parallel Algorithm Scaling

A substantial amount of effort has recently been devoted to improving the scalability of Mercury to large
(of order millions) numbers of parallel processes. Here we define scalability as the ability of a code to
perform efficiently as the number of parallel processes increases. An example of a code that is
non-scalable is one that exhibits a run time proportional to the number of processes. An example of a code
that is scalable is one that exhibits a run time proportional to the logarithm of the number of processes.
Enabling a code to be scalable to millions of processes requires attention to the details of algorithms and
memory usage that can be safely ignored when considering scaling to only a few thousand processes.

The specific Mercury algorithms currently being improved for scalability include the algorithms for
sourcing particles, for globally resolving particle locations onto the correct process (for Cartesian
domains), for load balancing the particle workload across processes (for the replication-only case [7]), and

4/12

Recent Advances in Mercury

Table I. Analytic POI Test Problem Results

N poi Fractional poe’s poi Fractional
(×10−3) Error (×10−3) Error

210 3.906 -0.021 2.138 -0.464
211 5.371 0.345 4.147 0.039
212 3.906 -0.021 2.893 -0.275
213 3.662 -0.083 3.710 -0.071
214 5.005 0.254 4.782 0.198
215 4.456 0.116 4.640 0.162
216 4.211 0.055 4.478 0.122
217 4.120 0.032 4.268 0.069
218 3.944 -0.012 4.056 0.016
219 3.937 -0.014 4.046 0.014
220 3.966 -0.006 4.029 0.009
221 3.965 -0.007 3.977 -0.004

∞ 3.992 – 3.992 –

for deciding at what point particle streaming communication has completed. In addition to addressing
parallel scalability of the algorithms themselves, the memory usage of the various algorithms has also been
carefully scrutinized to enable scalability. Table II summarizes the previous and improved parallel
scalability for various algorithms in Mercury, where Nproc is the number of processes.

Table II. Parallel Scalability of Monte Carlo Algorithms for Nproc Processes

Algorithm Previous Scaling Improved Scaling

Particle Sourcing O(Nproc) O(1)

Global Particle Find - Cartesian Domains O(Nproc) O((log Nproc)(log log Nproc))

Load Balancing - Replication O(N2
proc) O(log Nproc)

Test for Done with Particle Communication O(N2
proc) O(log Nproc)

The previous particle sourcing algorithm looped on each process over the total global number of Monte
Carlo source particles and sourced the particles onto the current process if the particle belonged on the
domain associated with the process. Assuming the number of source particles scales linearly with the
number of processes Nproc (i.e. weak scaling), this particle sourcing algorithm scales as O(Nproc). The
improved scalable algorithm loops over the local number of particles (total number of source particles

5/12

Brantley et al.

divided by the number of processes) and sources all local particles but requires subsequent communication
to locate the particles on the correct process. We have developed a new scalable algorithm to locate the
particle on the correct process that scales as O((log Nproc)(log log Nproc)). Details of this improved
algorithm will be published in a future paper.

The previous load balancing algorithm [18] gathered a global view of the amount of work on each process
and then made global decisions about how to communicate particles to achieve load balance. That load
balancing algorithm scales as O(N2

proc) and is not scalable, since it requires information about every
process. The improved load balancing algorithm [19] performs an iterative pair-wise (process pairs)
balancing step such that the particle workload is balanced across all processes after O(log(Nproc))
iterations.

Finally, we have implemented in Mercury a scalable “test-for-done” algorithm [20] to determine when all
particle communication has been completed. The previous algorithm stored an Nproc×Nproc matrix of the
number of sent and received messages, making the algorithm O(N2

proc) and hence not scalable. The
scalable algorithm uses tree-based communication and non-blocking reduce and broadcast operations
concurrently as particles are being tracked, resulting in O(log(Nproc)) scaling.

As an initial demonstration of the scalability of the Mercury parallel implementations, we performed a
weak scaling study using the Godiva critical sphere benchmark problem (HEU-MET-FAST-001) [21]. This
problem consists of a sphere of radius 8.7407 cm composed of highly-enriched uranium at a density of
18.740 g/cm3 and with isotopic atom fractions: 234U = 0.01025002, 235U = 0.9376829, and
238U = 0.05206708. A weak scaling study was performed ranging from 26 = 64 to 221 = 2,097,152 MPI
processes on the Sequoia supercomputer at LLNL, a 20-petaFLOP/s IBM computer with 16 PPC A2 CPU
cores per compute node, four hardware threads per core, and 16 GB memory per node. The weak scaling
study was performed using pure MPI parallelism and 104 Monte Carlo particles per process, resulting in up
to approximately 21 billion Monte Carlo particles being tracked for the 221 process case.

The wallclock time spent tracking particles as a function of the number of processes is shown in Table III.
The tracking wallclock time is remarkably constant, varying by less than 7%, as the number of processes
ranges from 64 up to 2,097,152.

The results of this initial weak scaling study demonstrate the scalability of Mercury to very large numbers
of MPI processes. Additional studies using problems with large numbers of cells, nuclides, and/or tallies
may reveal additional algorithms that require improvements to scale in these orthogonal code dimensions.
But we believe that the Mercury parallel process scaling is largely independent of these other code scaling
dimensions.

4.2. Threading

Mercury has traditionally used pure MPI to achieve parallelism on massively parallel computers. MPI is
used across compute nodes of the computational platform as well as on the CPU cores of individual nodes.
The ability to use threads with the OpenMP standard has recently been added to Mercury to enable
parallelism across the cores of each node. Simulations can now use a combination of both MPI and
OpenMP to distribute the Monte Carlo work across the CPU cores of a node. Each node may have one or
more MPI processes, and each MPI process may use one or more threads (tasks) to access compute cores
on the node. The threading capability can potentially result in significant memory savings, because nuclear

6/12

Recent Advances in Mercury

Table III. Tracking Wallclock Time [s] for Godiva Critical Sphere Weak Scaling

Number Processes Tracking
Nproc log2(Nproc) Wallclock Time

[s]

64 6 257
128 7 258
256 8 261
512 9 261

1,024 10 263
2,048 11 263
4,096 12 264
8,192 13 264
16,384 14 264
32,768 15 267
65,536 16 267

262,144 18 270
524,288 19 274

1,048,576 20 272
2,097,152 21 274

data can be stored once per MPI process instead of once per CPU core. This memory savings is expected to
be important as future computer platforms move toward a larger numbers of nodes and processor cores per
node coupled with lower memory available per node.

Mercury has three methods of distributing the work across the CPU cores of a computer: 1) spatial
decomposition [7,17], 2) spatial replication [7,18], and 3) now OpenMP work sharing. The first two
approaches are used to distribute work across MPI processes. The third approach is used to distribute the
work of a single MPI process across multiple CPU cores within a single compute node. OpenMP pragmas
are used to thread over particles, cells, and other sections of the code that perform significant work.
OpenMP may be used with both spatial decomposition and spatial replication. We note that MCNP has a
similar combined MPI/OpenMP parallelism for the replication-only case [22].

Coarse grain threading is achieved by creating a particle vault (list of particles to be tracked) for each thread
and distributing particles evenly across the vaults. At a high level, each thread works on the particles in its
vault. Implementing this capability requires a thread (task) layer in many data structures to enable multiple
threads to operate on particles independently without requiring thread locks that can degrade efficiency. At
the end of the particle transport, non-threaded code sums tallies over task layers to task zero. Mercury also
uses fine grained OpenMP parallelism at lower loop levels outside of the particle processing loop.

To examine the efficiency of the Mercury threading implementation, we performed a scaling study using
the Godiva critical sphere benchmark problem (HEU-MET-FAST-001) [21] described above. The

7/12

Brantley et al.

simulation was performed using continuous energy LLNL ENDL2009 nuclear data and 107 Monte Carlo
particles per static-K generation. Fifteen generations were discarded prior to averaging the eigenvalue, and
the eigenvalue fractional convergence tolerance was set to 2.5×10−4. In all cases described below,
Mercury computed keff = 1.000188±0.000166 which agrees with the experimental value of
1.000±0.001 [21] to within statistics. We performed a strong scaling study in which we fixed the problem
size (geometry and number of Monte Carlo particles) and varied the number of processes used to simulate
the problem from 16 to 1,024. The simulations were performed on the LLNL RZMerl Linux cluster that
has 16 Intel Xeon (Sandy Bridge) cores (2.6 GHz) and 32 GB of memory per core. We investigated the
impact on the particle tracking time and maximum node memory of the number of threads per node used
(varied from two to sixteen) for each of the total number of CPU values.

The wallclock time [s] spent tracking particles is shown in Table IV. The strong scaling of Mercury for this
problem is excellent - doubling the number of processors consistently produces a factor of two decrease in
tracking time. For a given number of CPUs, the particle tracking time is generally insensitive to the number
of threads used except when using sixteen threads. These results demonstrate that the threading
implementation for particle tracking is essentially as efficient as using MPI processes within a node. A
clear degradation in performance does occur when using the same number (sixteen) of threads as total
CPUs on the node. The wallclock times shown in Table IV exclude the initialization and finalization times;
including those times introduces up to approximately a 20% loss of efficiency in the threading results with
up to eight threads per node. This degradation in efficiency implies that additional opportunities for
threading potentially exist in the initialization and finalization portions of the code.

Table IV. Tracking* Wallclock Time [s] for Godiva Critical Sphere Problem

Number MPI Processes /
Number Threads Per MPI Process

Number CPUs 16 / 1 8 / 2 4 / 4 2 / 8 1 / 16

16 250.8 247.7 252.3 252.1 265.9
32 124.0 125.8 125.2 125.8 134.5
64 62.3 62.8 63.0 63.0 66.6
128 31.2 31.8 31.6 31.5 33.2
256 15.6 15.7 15.7 15.7 16.8
512 7.8 7.9 7.9 7.9 8.4

1,024 3.9 3.9 3.9 3.9 4.2

* Excludes initialization and finalization

The maximum node memory [GB] at the end of the calculation is shown in Table V. For this problem, the
memory reduction per MPI process elimination (in favor of using a thread) appears to be approximately
90-100 MB. This memory reduction is largely attributable to storing fewer copies of the nuclear data in
memory. Because this is a strong scaling problem with a fixed number of Monte Carlo particles, the
maximum node memory decreases as the number of CPUs is increased as a result of the decrease in the
number of particles per CPU.

8/12

Recent Advances in Mercury

Table V. Maximum Node Memory [GB] for Godiva Critical Sphere Problem

Number MPI Processes /
Number Threads Per MPI Process

Number CPUs 16 / 1 8 / 2 4 / 4 2 / 8 1 / 16

16 3.22 2.47 2.11 1.93 1.84
32 2.59 1.81 1.43 1.20 1.18
64 2.16 1.35 0.95 0.72 0.67
128 1.95 1.12 0.71 0.48 0.34
256 1.85 1.00 0.59 0.37 0.24
512 1.80 0.95 0.53 0.31 0.18

1,024 1.79 0.93 0.50 0.28 0.15

From the results of this scaling study, we conclude that the use of MPI processes in conjunction with
OpenMP threads in Mercury produces similar computational performance to using MPI alone but with a
significant reduction in memory usage.

5. CONCLUSIONS

We have described recent physics and computer science advances in the Mercury Monte Carlo particle
transport code. The addition of nuclear resonance fluorescence capabilities into Mercury is aimed at
enabling the application of the code to ongoing detector design efforts. A probability of initiation
capability based on a probability of extinction algorithm has been implemented in Mercury as an
alternative to the probability of initiation algorithm. Significant improvements in the parallel scalability of
various algorithms and the enabling of an OpenMP threading option position Mercury to run efficiently on
the current state-of-the-art computer platforms with large numbers of processors and low memory per
processor.

ACKNOWLEDGEMENTS

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344. A part of this work was funded under the
LLNL LDRD project 12-ERD-060.

REFERENCES

[1] P. S. Brantley, M.S. McKinley, “Mercury Web Site,” http://mercury.llnl.gov (2012).

[2] P. S. Brantley, S. A. Dawson, J. P. Grondalski, M. S. McKinley, M. J. O’Brien, R. J. Procassini, S.
M. Sepke, D. E. Stevens, T. B. Yang, Mercury User Guide: Version d.10, LLNL-SM-560687
(Revision #2), Lawrence Livermore National Laboratory Report (2012).

9/12

Brantley et al.

[3] R. Procassini, P. Brantley, S. Dawson, G. Greenman, M. S. McKinley, M. O’Brien, S. Sepke, D.
Stevens, B. Beck, C. Hagmann, “New Features of the Mercury Monte Carlo Particle Transport
Code,” Proceedings of Joint International Conference on Supercomputing in Nuclear Applications
and Monte Carlo 2010 (SNA + MC2010), Tokyo, Japan, October 17-21, 2010, on CD-ROM (2010).

[4] R. Procassini, D. Cullen, G. Greenman, C. Hagmann, K. Kramer, S. McKinley, M. O’Brien, J.
Taylor, “New Capabilities in Mercury: A Modern Monte Carlo Particle Transport Code,”
Proceedings of Joint International Topical Meeting on Mathematics & Computation and
Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, California, April 15-17,
2007, on CD-ROM (2007).

[5] R. Procassini, J. Taylor, S. McKinley, G. Greenman, D. Cullen, M. O’Brien, B. Beck, C. Hagmann,
“Update on the Development and Validation of Mercury: A Modern, Monte Carlo Particle Transport
Code,” Proceedings of Mathematics and Computation, Supercomputing, Reactor Physics and
Nuclear and Biological Applications, Avignon, France, September 12-15, 2005, on CD-ROM
(2005).

[6] R. J. Procassini, D. E. Cullen, G. M. Greenman, C. A. Hagmann, “Verification and Validation of
Mercury: A Modern, Monte Carlo Particle Transport Code,” Proceedings of The Monte Carlo
Method: Versatility Unbounded in a Dynamic Computing World, Chattanooga, Tennessee, April
17-21, 2005, on CD-ROM (2005).

[7] R. Procassini, J. Taylor, I. Corey, J. Rogers, “Design, Implementation and Testing of Mercury: A
Parallel Monte Carlo Transport Code,” Proceedings of Nuclear Mathematical and Computational
Sciences: A Century in Review, A Century Anew, Gatlinburg, Tennessee, April 6-11, 2003, on
CD-ROM (2003).

[8] J. M. Hall, V. A. Semenov, F. Albert C. P. J. Barty, “Numerical simulation of nuclear materials
detection, imaging and assay with MEGa-rays,” Proceedings of INMM, 52nd Annual Meeting, Palm
Desert, California, July 17-21, 2011, on CD-ROM (2011).

[9] R. Buck, E. Lent, T. Wilcox, S. Hadjimarkos, “COG: A Multi-particle Monte Carlo Transport
Code,” Lawrence Livermore National Laboratory Report UCRL-TM-202590 (2002).

[10] A. B. McKinney, G. W. McKinney, D. B. Pelowitz, B. J. Quiter, A. Coalter, “MCNPX NRF Library -
Release 4,” Trans. Am. Nucl. Soc., 104, Hollywood, Florida, June 26-30, 2011, on CD-ROM (2011).

[11] B. Beck, P. Brantley, E. Brooks, F. Daffin, C. Hagmann, S. Quaglioni, J. Rathkopf, “MCAPM-C
Generator and Collision Routine (Gen2000/Bang2000) Documentation,” Lawrence Livermore
National Laboratory Report (2012).

[12] G. M. Greenman, R. J. Procassini, C. J. Clouse, “A Monte Carlo Method for Calculating Initiation
Probability,” Proceedings of Joint International Topical Meeting on Mathematics & Computation
and Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, California, April
15-17, 2007, on CD-ROM (2007).

[13] M. E. Rising, F. B. Brown, A. K. Prinja, “The Probability of Initiation in MCNP,” Trans. Am. Nucl.
Soc., 102, San Diego, California, June 13-17, 2010, on CD-ROM (2010).

[14] T. E. Booth, “Comments on Monte Carlo Probability of Initiation Estimates for Neutron Fission
Chains,” Nucl. Sci. Engr., 166, pp. 175-178 (2010).

[15] T. E. Booth, “Monte Carlo Probability of Initiation Estimates in MCNP,” Los Alamos National
Laboratory Report LA-UR 09-05874 (2009).

[16] M. S. McKinley, P. S. Brantley, “Probability of Initiation and Extinction in the Mercury Monte Carlo
Code,” Proceedings of International Conference on Mathematics and Computational Methods
Applied to Nuclear Science & Engineering (M&C 2013), Sun Valley, Idaho, May 5-9, 2013, on
CD-ROM (2013).

10/12

Recent Advances in Mercury

[17] G. Greenman, M. O’Brien, R. Procassini, K. Joy, “Enhancements to the Combinatorial Geometry
Particle Tracker in the Mercury Monte Carlo Transport Code: Embedded Meshes and Domain
Decomposition,” Proceedings of International Conference on Mathematics, Computational Methods
& Reactor Physics (M&C 2009), Saratoga Springs, New York, May 3-7, 2009, on CD-ROM (2009).

[18] R. J. Procassini, M. J. O’Brien, J. M. Taylor, “Load Balancing of Parallel Monte Carlo Transport
Applications,” Proceedings of Mathematics and Computation, Supercomputing, Reactor Physics
and Nuclear and Biological Applications, Avignon, France, September 12-15, 2005, on CD-ROM
(2005).

[19] M. J. O’Brien, P. S. Brantley, K. I. Joy, “Scalable Load Balancing for Massively Parallel Distributed
Monte Carlo Particle Transport,” Proceedings of International Conference on Mathematics and
Computational Methods Applied to Nuclear Science & Engineering (M&C 2013), Sun Valley, Idaho,
May 5-9, 2013, on CD-ROM (2013).

[20] T. A. Brunner, P. S. Brantley, “An Efficient, Robust, Domain-Decomposition Algorithm for Particle
Monte Carlo,” J. of Comp. Phys., 228, pp. 3882-3890 (2009).

[21] International Handbook of Evaluated Criticality Safety Benchmark Experiments, Nuclear Energy
Agency, on CD-ROM (2010).

[22] D. B. Pelowitz, Editor, “MCNP6
TM

User’s Manual,” Los Alamos National Laboratory Report
LA-CP-11-01708 (2011).

[23] F. R. Metzger, “Resonance Fluorescence in Nuclei,” Prog. in Nuc. Phys., 7, pp. 53-88 (1959).

APPENDIX: NRF CROSS SECTION GENERATION

For a low (less than 4 MeV) energy photon, the interaction of the photon with a nucleus typically involves
only nuclear resonance fluorescence (NRF) in which the photon is absorbed by the nucleus and later one or
more photons are emitted by the nucleus. The NRF cross section is composed of very narrow (� 1 eV)
resonances. For Monte Carlo transport, the NRF process is divided into absorption, requiring only the cross
section, and emission, requiring the branching ratio of the excited nuclear levels.

For a nucleus at rest, absorption can occur when the energy of the photon, Ephoton, and one of the nuclear
levels, designated as l, of energy El satisfy

Er = Ephoton = El

(
1 +

El

2mc2

)
, (A-1)

where m is the mass of the nucleus in its ground state, c is the speed of light, and Er indicates the resonance
energy. For a moving target (see Eq. (4) in [23]), the energy of a photon appears to be γEphoton(1 + β)
where β = v/c, v is the velocity of the target, and γ = 1/

√
(1− β2). Even for a target at a temperature of

300 K, the motion of the target greatly broadens the effective width of each resonance. From Eq. (11)
in [23], the cross section of the thermally-broadened resonance is to a good approximation given by

σ(Er) = σ0 exp
(
−(Ephoton − Er)2/∆2

)
, (A-2)

where ∆ = Ephoton

√
2T/(mc2), T is the temperature of the target, and σ0 is defined to be consistent with

Eq. (11) in [23].

For emission, we assume that the target comes to rest before the nucleus decays. The energy of a photon in
the lab frame emitted from a level of energy El is given by

Ephoton = El

(
1− El

2(mc2 + El)

)
. (A-3)

11/12

Brantley et al.

For 238U, we only considered the first (e1) and second (e2) nuclear levels. As the e1 level has a relatively
long half-life compared to the e2 level and its energy is relatively low, the cross section for the e1 level was
set to zero. The e1 level was included, however, since the e2 level has a branch to it. A pointwise cross
section for the e2 resonance was calculated using Eq. (A-2) to an accuracy of 0.1% over the energy range
Er − 5∆ to Er + 5∆ (requiring 581 cross section values per resonance).

Table VI. 238U NRF Cross Section Data

Decay Branching
Level Energy Er σ0 ∆ Half-Life Level Ratio

[MeV] [MeV] [cm2] [MeV] [s]

e1 0.044916 N/A N/A N/A 2.06×10−10 e0 1.0

e2 0.680110 0.6801110 2.463×10−22 3.284×10−7 3.50×10−14 e0 0.558659
e1 0.441341

12/12

